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Abstract
Considering a charged three-dimensional harmonic oscillator coupled to the
photon field by the usual coupling constant, we show that a qualitative
change in the possible states of the system occurs when a length and an
energy, characteristic quantities of the oscillator, satisfy a simple relation.
The frequency being fixed, oscillator–photon resonances change to oscillator–
photon bound states when the length increases.

PACS numbers: 03.65.−w, 11.10.−z, 33.80.−b

1. Introduction

A lot of work has been done aimed at describing as rigorously as possible the excited states of
matter coupled to radiation. It is of course impossible to quote all the papers devoted to the
subject. References [1] to [14] are among some works specially connected to this subject. In
[8–12] we introduced a parameterµ which is proved to be useful in studying resonances in
this context, even for large values of the coupling constant.

The aim of this paper is to show a physical situation in which this parameter has a physical
meaning and may vary. The dependence of the resonances or bound states on this parameter
is described. Some of the resonances we present are not considered, usually.

Of course some of these resonances do correspond to what is known as the excited states
of the system which is coupled to the boson. We will not try here to make precise which
ones because, surprisingly, this is an intricate question. It will be the subject of a forthcoming
paper. Indeed to answer this question we should let the coupling constantλ decrease to 0, in
order to be able to compare the resonances we obtain to the non-perturbed eigenstates. But
then the position of the poles must be considered as functions of two variables,λ andµ. It
occurs that these functions are in general many-valued, even whenλ andµ are real. It is a
surprising fact that variations with respect toλ andµ do not always commute and this has the
consequence that the labelling of the resonances is a tricky problem. To avoid dealing with
that question, in all that follows the coupling constant is held fixed.
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2. Oscillator–photon bound states and resonances

2.1. The system, its physical parameters and its Hamiltonian

Let us consider a three-dimensional harmonic oscillator with charge +1 coupled to the photon
field. We suppose that the oscillator is isotropic, has massm and spring constantkr . The
reason why its angular frequencyω = √

kr/m is not the only parameter we introduce is that
we want to be free to also vary the space extension of the stationary states. This extension is
measured byδ := √

h̄/mω. Whenω is fixed,δ−1 will be theµ parameter. We recall that the
wave functions of the states having energynh̄ω are

ϕnx,ny,nz (x) = (
√
πδ)−3/2 (2nx+ny+nz nx !ny ! nz!

)−1/2

× e− 1
2
x2+y2+z2

δ2 Hnx

(x
δ

)
Hny

(y
δ

)
Hnz

(z
δ

)
(1)

wheren = nx + ny + nz. Let us setE := h̄ω. By varyingE andδ, we vary the quantityEδ
which has the same dimension as ¯h.

LetH = Hosc⊗Hphot be the Hilbert space of the system states. The Hamiltonian for the
harmonic oscillator is

Hosc= h̄2(kop)2
/

2m + krr2/2 = E(a∗
xax + a∗

yay + a∗
z az + 3/2) (2)

wherer ∈ IR3, k ∈ IR3 andax = 2−1/2i(δ−1x + δ∂x).

The photon field, regularized by an ultraviolet cut-off functionκ,which will be superfluous
later on, is

A(r) =
(

h̄

(2π)3 ε0

)1/2 ∑
i=1,2

∫
κ(k)√
2|k|

(
εi (k)c∗

i (k)e
−ik·r + εi (k)ci(k)eik·r

)
dk (3)

whereεi(k) = εi(k̂), i = 1,2, are defined everywhere except for a certain directionk̂0 and
form a field of two mutually orthogonal polarization vectors (k̂ = k/|k|).

The coupling with the photon field is supposed to be given by simplifying the Hamiltonian

H := Hosc⊗ I + I ⊗ Hphot+ HI (4)

with HI := − q
m

A(r) · p. We suppress the constant term inHosc.
The first approximation is the so-called round wave approximation in which the interaction

is described only by resonant terms:

HRWA
I =

√
α

2π
Eδ

∑
i=1,2

∫ ∞

−∞
κ(k)

2
√
π

√|k|

×
(
[a · εi(k)] c∗

i (k)e
−ik·r + [a∗ · εi (k)] ci(k)eik·r

)
dk (5)

wherea = (ax, ay, az), εi (k) = ((εi(k))x, (εi(k))y, (εi(k))z) and α is the fine structure
constant.

Let |0〉 denote the fundamental state of the oscillator and� the vacuum in the photon
space. Because of the multiplication by eik·r, the interaction Hamiltonian transforms|0〉⊗|kε〉
(the photon has a wave vectork and a polarizationε) into a state having components on all
states|n〉 ⊗ �. So, in this paper, we will make a second approximation, getting rid of the
excited states of the oscillator except for the first one.

It must be noted that although the model is simple, obtaining all the resonances without
this approximation does not seem easy at all and has not been done up to now. (see [12] for a
first step). The proof of the existence, in the simple model that we present now, of a resonance
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which is usually not considered, except when it is real and under certain conditions, is the first
one to the best of our knowledge.

More precisely, letP�1 be the projector on the space spanned inHosc ⊗ Hphot by the
following vectors or subspaces:|0〉 ⊗ �, {|0〉} ⊗ Fphot,1, a∗

x |0〉 ⊗ �, a∗
y |0〉 ⊗ �, a∗

z |0〉 ⊗ �.
(Fphot,1 is the space of one-photon states.) We consider as our final interaction Hamiltonian

H1,I := P�1H
RWAP�1. (6)

In the limit where the cut-offκ is removed, it can then be shown that

H1,I := λ1 E
∑
i=1,2

(a∗
x ⊗ ci(gi,x(δ, ·)) + ax ⊗ (ci(gi,x(δ, ·)))∗ + a∗

y ⊗ ci(gi,y(δ, ·))

+ ay ⊗ (ci(gi,y(δ, ·)))∗ + a∗
z ⊗ ci(gi,z(δ, ·)) + az ⊗ (ci(gi,z(δ, ·)))∗) P�1 (7)

where

λ1 :=
√

α

2π
(8)

and gi (δ, k) = (gi,x(δ, k), gi,y(δ, k), gi,z(δ, k)) = g(δ, k) εi (k) ∀k, k̂ �= k̂0, with

g(δ, k) = δ

2
√
π

√|k| F
(|ϕ0,0,0|2

)
(k) = δ3/2 e− 1

2k2δ2/2

2
√
π

√
δ|k| . (9)

F is the Fourier transformation. The cut-off functionκ is no more useful,due to the exponential
decrease ofϕ0,0,0.

Through the successive simplifications,the original Hamiltonian (4) has thus been changed
to another one which has a simple Friedrichs’ type form [15]:

H1 := P�1 (Hosc⊗ I)P�1 + P�1 (I ⊗ Hphot)P�1 + H1,I (10)

with H1,I given by (7).
Let us now calculate the eigenvalues of (10) when they exist and prove that they manifest

themselves as resonances when they do not exist.

2.2. Determination of bound states and resonances

2.2.1. Existence. Let us state the result.|1〉x denotesa∗
x |0〉, and |1〉 := (a∗

x |0〉, (a∗
y |0〉,

(a∗
z |0〉). z → (〈1x |[z − H1(1)]−1|1x〉)−1 is analytic in the upper half-plane and can be

analytically continued into the lower half-plane across the cut IR+. In this paper, we will
consider the function that this continuation defines in the complex plane cut along IR−. (The
upper lip of the cut is included.)

Proposition. There exist two complex-valued functions z1(E, δ) and z0(E, δ), defined for
every E > 0 and every δ > 0,which are zeros of the multivalued function

z →
(
〈1x |[z − H1(1)]−1|1x〉

)−1
. (11)

They are of the form zi(E, δ) = Esi ( h̄
Eδ ), where si(µ) is a zero of the analytic continuation

into C\IR− from the upper half-plane of

s → f1,µ(s) := s − 1 − α

3π

∫ ∞

0

s′ e− 1
2 (s

′)2

s − µs′
ds′. (12)

(For �s < 0, the concrete form of this continuation is f1,µ,+ given by (30).) α
3π �

7.74× 10−4 and µc := α

3
√

2π
� 9.7 × 10−4 is a transition value for h̄

Eδ , at which z0(E, δ)
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changes from negative values to complex ones in the second sheet through the branch point of
(12)when h̄

Eδ increases. The critical relation is thus

E δα = 3√
2π

h. (13)

More precisely,

(a) z1(E, δ) is a zero of the continuation of (11), or of fh̄/(Eδ), into the lower half-plane
through the positive real axis. It is complex for every value of E and δ.

(b1) If Eδ < 3
α
√

2π
h � 164h, z0(E, δ) is another complex zero of the continuation of (11) into

the same region. The coupled oscillator has a resonance corresponding to that complex
point. This resonance never becomes real.

(b2) If Eδ > 3
α
√

2π
h � 164h, z0(E, δ) is negative and the coupled oscillator has a bound state

with energy z0(E, δ). The eigenspace is three-dimensional. Eigenvectors (depending on
E and δ) corresponding to the eigenvalue z0(E, δ) are

(0,V(k) = V · |1〉 ⊗ � +

√
α

2π
√

2
Eδ|0〉 ⊗ e− 1

2k2δ2/2

√|k| (z0(E, δ) − h̄|k|) P (k)(V) (14)

with V arbitrary in C
3 and P(k) denoting the orthogonal projector on k⊥. These states

have angular momentum 1 as linear superpositions of angular momentum 1 states.

Remark. As we have mentioned in section 1, one of the two resonances (or bound states)
is the one usually associated with the unstable states corresponding to|1x〉, |1y〉, |1z〉. But
the difficulty of knowing which one holds to the fact that the usual calculation and even the
definition of the excited states are in term ofλ, and variation with respect toµ andλ do
not commute for all paths. This will be discussed in the paper in preparation mentioned in
section 1. This question is also linked with the possibility, in case (b1), of a coincidence
betweenz0(E, δ) andz1(E, δ) for some special values ofEδ (andα).

E andδ are independent quantities.E being given, ifδ increases, the proposition tells us
that there is a qualitative transition in the nature of the possible states of the system whenEδ
crosses 164h. The critical distance corresponding to 1 eV isδc � 0.2 mm. Physically,δ is
large whenkr is small(δ = h̄1/2(mkr)

−1/4 = E1/2 k
−1/2
r ).

Proof. The first part of the proof that follows is not essentially a new result; it is only given here
to take explicitly into account the vector aspect of the photon, and to follow the dependence
in E andδ of the oscillator–photon bound states. The second part proves that this bound state
turn into a resonance for sufficiently large and arbitraryδ. This result is new.

Part 1. Let us look for eigenvectors of (10) of the form

ψ(k) := (α · |1〉) ⊗ � + |0〉 ⊗ ϕ(k) Projε1,ε2
(k)(β1,β2) (15)

whereϕ is inL2(IR3), vectorsα andβi are constant vectors inC3 and

Projε1,ε2
(k)(β1,β2) := Projε1(k)(β1) ε1(k) + Projε2

(k)(β2) ε2(k)

Proju being the orthogonal projector onu. The set of states of the form (14) is invariant by
H1. The relation

H1ψ = zψ (16)
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is equivalent to the set of relations

(λ1E gδ(k)α − ϕ(k)(z − h̄k)β1) · ε1(k) = 0 (16a)

(λ1E gδ(k)α − ϕ(k)(z − h̄k)β2) · ε2(k) = 0 (16b)

E α + λ1E
∫

ϕ(k) gδ(k)Projε1,ε2
(k)(β1,β2) dk = z α. (16c)

gδ is written forg(δ, ·). Let us suppose that the functionε1(·) is chosen in such a way that its
three componentsε1,x(·), . . . are linearly independent, and also in such a way that the three
components ofε2(·) are independent.

From (16a) and (16b), ifz < 0, whenδ is large enough, we get

ϕ(k) = C1 gδ(k)
z − h̄|k| . (17)

(If z > 0,ϕ /∈ L2(IR3). The dependence ofϕ on δ is understood.) We also get

β1 = β2 = C−1
1 λ1E α. (18)

Relation (16c) then implies

L α = 0 (19)

with

Lµ = (z − E) I − (λ1E)2 , (20)

where we set

, =
∫

(gδ(k))2

z − h̄|k| P(k) dk. (21)

L and, are operators on IR3 depending on the eigenvaluez. We have
∫
S2
P(k̂) = 8π

3 I and
thus

, = 2

3

(
δ2
∫ ∞

0

e− 1
2δ

2k2

z − h̄ |k| |k| d|k|
)
I. (22)

Therefore,L α = 0 has a non-zero solution forα only if z is a zero of

f (λ1, z) := z − E − 2

3
λ2

1 E2δ2
∫ ∞

0

(g1,δ(|k|))2
z − h̄|k| d|k| (23)

where

g1,δ(ξ) := ξ1/2 e− 1
2ξ

2δ2/2 (24)

is now a function of one variable. (g(δ, k) in (9) was a function of three variables.) We will
also be interested in the zeros of the analytic continuation off (λ1, ·) across the positive real
axis, which we denote byf+(λ1, ·), since, by

〈1x | [z − H1]−1|1x〉−1 = f (λ1, z) (25)

a relation which will be proved at the end of the section, this continuation gives resonances.
Let us now introduce the dimensionless quantities

s = E−1 z and γ := Eδ
h̄
. (26)

We get

f (λ1, z) = E f1,1/γ (s) (27)

with f1,µ(s) given by (12).
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Part 2. So we are now left with the determination of zeros off1,µ, with µ = 1/γ . (As
expected, they depend only on̄hEδ .) Zeros of functions of this type, with various functions in
the numerator of the integrand in (12), were determined in [8–12]. Unfortunately, the function

g1(s) := s1/2 e− 1
4s

2

in (12) does not decrease at infinity, except if| args| < π/4 or | arg−s| < π/4; this prevents
us from using the theoretical result in [11] for getting zeros off1,µ. They can be computed
numerically (see section 2.2.2), but the theoretical analysis is also useful.

Let us note that there would have been no problem here if we had considered the hydrogen
atom instead of the harmonic oscillator. Indeed the behaviour in e−ar of the stationary states at
large distances would give rise to coupling functions decreasing at infinity (and having poles
at finite distances). However, the proof in [11] may be adapted to the present case as explained
in the appendix.

This implies thatf1,µ or its analytic continuation has at least two zeross0(µ) ands1(µ),
the eigenvalues of (10) we are looking for being then

zi(E, δ) = Esi
(

1

γ

)
= Esi

(
h̄

Eδ

)
. (28)

Moreover, the functionssi , or zi , may be described qualitatively by introducing

µc := α

6π
|||s|−1g2

1(s)||1 = α

6π

∫ ∞

−∞
e−s2/2 ds = α

3
√

2π
� 9.7 × 10−4. (29)

Whereasz1(E, δ) is complex for allE, δ and indicates a resonance,z0(E, δ) may be complex
or real, indicating a resonance or a bound state, depending on whetherγ < 3

√
2π α−1 or

γ > 3
√

2π α−1. Thatz1(E, δ) never becomes real is due to the fact thatf1,µ has no real
zeros ifµ > µc and only one ifµ � µc, since it is an increasing function. The proposition
will be completely proved when we have proved (25).

The proof goes the usual way by considering the projectorQ on the one-dimensional space
{|1x〉 ⊗ �}, andQ̄ = 1 − Q. When�z > 0, so thatQ̄[z − H1]Q̄ is invertible, the operator
Q(z−E)Q−QH1,I Q̄(Q̄[z−H1]Q̄)−1Q̄H1,IQacting in this space is a multiplication operator
with inverse〈1x |[z − H1]−1|1x〉I . To calculate the former, one develops perturbatively
(Q̄[z − H1]Q̄)−1. Only the term without coupling in(Q̄[z − H1]Q̄)−1 gives a non-zero
contribution. Indeed, after integration on all directions of the photon momenta, only the
diagonal terms(ε1)x(k)(ε1)x(k) + (ε2)x(k)(ε2)x(k) (the same withy andz) give a non-zero
contribution 8π/3. These terms are the matrix elements ofP(k). �

2.2.2. Numerical values. We are particularly interested in the zeroz0(E, δ).
In case (a) of the proposition, that is for values ofγ = Eδ

h̄
below the critical value

γc := (µc)
−1 � 1030, the continuationf1,1/γ ,+ of f1,1/γ across the positive real axis from

the upper half-plane is

f1, 1
γ ,+

= s − 1 − α

3π

∫ ∞

0

s1 e− 1
2s

2
1

s − s1/γ
ds1 +

2

3
i α γ 2 s e− 1

2γ
2s2

. (30)

The path of the zeros0( 1
γ
) in the complex plane asγ varies between 600 and 930 is shown

in figure 1. It gives the position of thez0-resonance after multiplication byE. It is difficult to
approach the critical valueγc � 1030 because of the lack of convergence of the calculation on
the computer. However, as expected, it can be seen by refining the calculation that the path is
likely to link with the negative real axis at 0 whenγ increases up toγc, or, if E is fixed, when
δ increases up to the critical valueδc.
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0.00004 0.00006 0.00008 0.0001

-0.00025

-0.0002

-0.00015

-0.0001

-0.00005

Figure 1. Complex values ofs0 = E−1z0(E, δ) for 600< γ < 930< γc.

1500

s0

2000 2500 3000

-0.0004

-0.0003

-0.0002

-0.0001

�c � 1030

↓
�

Figure 2. Values ofs0 = E−1z0(E, δ) as a function ofγ = h̄−1Eδ for γ > γc .

Forγ > γc, case (b) of the proposition, the real negative values ofE−1 z0(E, δ) = s0(
1
γ
)

are shown on the vertical axis of the graph in figure 2 as a function ofγ . These are energies
of bound states. The following relations can be proved from (12):

lim
γ→γ +

c

s0

(
1

γ

)
= 0 lim

γ→∞ s0

(
1

γ

)
� − α

3π
� −7.7 × 10−4.

The zeroz1(E, δ) moves entirely inside the second sheet, whenγ varies, and

lim
γ→∞ z1

(
1

γ

)
� E

(
1 +

α

3π

)
.

3. Conclusion, comments and perspectives

3.1. Conclusion

We exhibited two poles of the Hamiltonian resolvent. We left open the question knowing
which one is related to the familiar one associated with the unperturbed excited level. The
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following analogy may help to grasp the difficulty. A second-order algebraic equation has two
zeros but when some parameter is introduced in the equation, the two zeros may interchange
in some sense, when the parameter varies in the complex plane. In our case, it can be shown
that the difficulty even appears in IR2. The important point for us here is that there are two
poles.

From the proposition,z0 is real negative whenE δ α is sufficiently large. In QED,α is
fixed, so the only way to haveE δ α large is to haveE large orδ large (or both). The principal
aim of the paper was to present a simple model and its physical parameters which can be used
to follow oscillator–photon bound states corresponding toz0. The proof that these states turn
into resonances when some characteristics of the oscillator are varied has been given. We do
not know of any such statement in the relevant literature.

3.2. More complete and more realistic studies of systems interacting with photons

The model we examined in this paper is certainly a rough one. It would be interesting to
improve it, for example, by taking into account the previously neglected excited states of the
oscillator, or treating completely the hydrogen atom, or hydrogenic atoms, coupled to the
photon field in a non-relativistic way. Although electromagnetic matrix elements given in [16]
could be used so that the Hamiltonian is known by its matrix elements on a certain base, it
seems to us a difficult task to look for all the resonances. Indeed, even by limiting ourselves
to one photon and one excited state, we have seen that the position of the resonances can
only be determined by a computer, since no perturbative argument is known at the moment.
We have only an existence theorem. Nevertheless, the model we just treated shows that
bound states, which would perhaps have been associated with strong coupling, may possibly
occur in electromagnetic interactions if the states of the system which couples to the radiation
have a sufficiently large extension. In this respect, it would also be interesting to examine
the consequences of the result with regard to atoms or large molecules. We showed that
even if the bound states are not present, they manifest themselves (theoretically, at least) as
resonances. It is expected that to each energy level of the system which is coupled to the
photon is associated a countable infinity of bound states or resonances. This has been proved
for the complete one-dimensional oscillator coupled to massless scalar bosons via a certain
class of meromorphic coupling functions [12].

3.3. A possible application to quark–gluon systems

The coupling constant in the model was the electromagnetic one. Nevertheless, the statement
in the proposition still holds with any value ofα, for instanceαs , the coupling constant
of strong interactions at low energy. (Let us recall that what we wanted to avoid, for the
moment, was to varyµ and the coupling constant simultaneously. But the coupling constant
can in fact be chosen arbitrarily, provided that it is kept fixed in the process of determining
the resonances.) Models coupling quark systems in the fundamental state and first excited
states to gluons could be examined with the point of view we presented here, neglecting in
a first approach spin, flavour and colour degrees of freedom. The possible formation of a
qq̄-gluon bound state, due to the existence ofz0, could be in competition with the bringing
of the qq̄ system in an upper excited state by the gluon. Since in excited states quarks
are likely to be further apart than in the fundamental state, this could yield a confinement
mechanism.
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Appendix A

We study here the zeros of (12)

f1,µ(s) := s − 1 − 2λ2
2

∫ ∞

0

s1 e− 1
2s

2
1

s − µs1
ds1

from a theoretical point of view. Numerical values are given in the figures.λ2 is
√

α
6π . The

method in [10, 11] for proving the existence of the zeross0(µ) ands1(µ) for any valueµmax
of µ is to follow the existence ofsi (µ) asµ varies on a certain path inC, starting from 0 and
ending atµmax. If it is s0(µ) that is followed, the path described byµ must avoidµc(λ2) (see
(29)), for s0(µ) to avoid 0, which is the branch point off1,µ. Nearµc(λ2), we suppose that
the path follows the half-circle of radiusε := µc(λ2) sin π

12 so that argµ � π
12. Otherwise,

µ stays real. The path is denoted byCε(µmax). The path used to follows1(µ) may simply
be [0, µmax]. A local existence theorem on zeros of analytic function is used to perform a
step-by-step construction ofsi(µ), up to a certain limit pointsi,lim for a certainµi,lim. The
construction is successful ifµi,lim is not smaller thanµmax. The way we did this in [11] was
to prove the following:

Proposition A. If there is an accumulation point slim in the construction, it is necessarily at
a finite distance.

The proof of this assertion in [11] uses the boundedness ofg1 at infinity in all complex
directions. Although this is not true here, the proposition still remains true.

Proof. We are going to prove three lemmas which concern roughly the three regions where
g2

1 is respectively exponentially decreasing, exponentially increasing and linearly increasing
at infinity. The idea of the proof is to show thats and

ϕ(s) :=
∫ ∞

0

s1 e− s21
2

s − s1
ds1 (A1)

have different behaviour at infinity. �

Lemma A1. Set S1 := {ζ ; −π
4 < argζ � π}. ϕ(ζ ) together with its analytic continuation

are bounded in S1, for |ζ | > 1.

Proof. (Adaptation of the proof of lemma 1 of [11]). Let ζ be in S1. Let us consider
the discD(ζ, sin π

8 ). If �ζ > 0 andD(ζ, sin π
8 ) ∩ IR+ = ∅, then |ϕ(ζ )| < (sin π

8 )
−1.

If D(ζ, sin π
8 ) ∩ IR+ �= ∅, then the boundary ofD does not intersect e−i π4 IR+ and thus

supz∈∂D |g1(z)|2 < ∞. The integral definingϕ or its continuationϕ+ may be calculated on
a contour the points of which remain at a distance at least sinπ

8 from ζ , a contour which is
either a part of IR+ or a part of∂D. The boundedness follows. Finally, if−π

4 < argζ < 0
andD(ζ, sin π

8 ) ∩ IR+ = ∅, thenϕ+(ζ ) is the sum of the principal determination, which is
bounded, and the residue part 2iπg1(ζ )

2 which is also bounded. Thusϕ or ϕ+ are bounded
in S1. �
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ϕ is also bounded if|ζ | > 1 and−π � argζ � −2π/3. As a consequence, since for
µ′ ∈ Cε(µmax), s ∈ S1 impliess/µ′ ∈ S1 or −π < arg z

µ′ � −2π/3, the zeros off1,µ(s) or
f1,µ, +(s) in S1 form a bounded set.

Lemma A2. For θ ′ > 0, let θ = π
12 + θ ′ be in ]0, π4 [. Set Sθ := {ζ ; −3π

4 + θ � argζ �
−π

4 − θ}. Let µ1, µ2 satisfy µ2 > µ1 > 0. Set Mθ ′ := max{Aθ ′, B} with

Aθ ′ = µ2

(
2

sin 2θ ′ log

(
(µ2)

2

4πλ2
2

(
1 +

γ

µ1

)))1/2

B =
(
4
√

2 λ2
2γ

(µ2)
2

µ1

)1/2

. (A2)

Then {|µ| ∈ [µ1, µ2], s ∈ Sθ , |s| > Mθ ′ } �⇒ f1,µ,+(s) �= 0.

Proof. s ∈ Sθ impliess/µ ∈ Sθ ′ . We have

s−1f1,µ,+(s) = 1 − 1

s
− 2

λ2
2

µ2

(
s

µ

)−1

ϕ+

(
s

µ

)
where

ζ−1ϕ+(ζ ) = 1

ζ

∫ ∞

0

s1 e−s2
1/2

ζ − s1
ds1 − 2iπe− 1

2ζ
2
.

From cos(arg(( s
µ
)2)) < − sin(2θ ′) and|s| > Aθ ′ we get∣∣∣∣exp

(
−1

2

s2

µ2

)∣∣∣∣ > exp

(
1

2

∣∣∣∣ sµ
∣∣∣∣
2

sin(2θ ′)

)
>

(µ2)
2

4πλ2
2

(
1 +

γ

µ1

)
.

Besides,|s| > B implies∣∣∣∣∣∣
(
s

µ

)−1 ∫ ∞

0

s1 e− s21
2

s
µ

− s1
ds1

∣∣∣∣∣∣ <
√

2
(µ2)

2

B2 .

Therefore,

2
λ2

2

µ2

∣∣∣∣∣
(
s

µ

)−1

ϕ+

(
s

µ

)∣∣∣∣∣ >
(

1 +
γ

µ1

)
− 2

√
2
(µ2)

2

(µ1)2

λ2
2

B2 = 1 +
γ

2µ1
.

This implies|s−1f1,µ,+(s)| > 0. �

We are left with proving the boundedness property of the set of zeros in the intermediate
region.

Lemma A3. The set of zeros of f1,µ,+ in {s; π
4 − π

12 � args � π
4 }, for |µ| > µ1 and

µ ∈ Cε(µmax), is bounded.

Proof. Let us sett := s
µ(1−i)

. It can be seen thatf1,µ,+(tµ(1 − i) = 0 is equivalent to

x(µ, t) := µ t − 1/2 + 2
λ2

2

µ
I2(t) − 4π

λ2
2

µ
t sin(t2) = 0 (A3a)

y(µ, t) := −1/2 − 4
λ2

2

µ
tI1(t) + 2

λ2
2

µ
I2(t) + 4π

λ2
2

µ
t cos(t2) = 0 (A3b)
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where

I2(t) :=
∫ ∞

0

s2 e− s2
2

s2 + (2t − s)2
ds, I1(t) :=

∫ ∞

0

s e− s2
2

s2 + (2t − s)2
ds.

Setτ = �t andθ = argt . If θ < π
6 , then 1− 2 tan2 θ > 1/3 and

|s2 + (2t − s)2| > 2

3
τ2, ∀s � 0. (A4)

If µ ∈ Cε(µmax) ands satisfies the hypotheses, then−π
6 < θ � 0 and thusτ >

√
3

2
√

2
1

µmax
|s|.

We then get

0 < I2(t) < 4(µmax)
2
√
π

2
|s|−2, 0 < t I1(t) < 2

√
2 µmax |s|−1. (A5)

Since|s| > µ1
√

2 |t|, we get

µt − 1/2 − 4π
λ2

2

µ
t sin(t2) = o(|t|−1)

−1/2 + 4π
λ2

2

µ
t cos(t2) = o(|t|−1)

which implies

4π
λ2

2

µ
t2 = µ2 t2 +

1

2
− µt + o(|t|−1). (A6)

But if t is large enough and thuss is large enough, for anyµ satisfyingµ1 < |µ| < µmax,
(A6) is false. �

As we covered all the possible regions for the zeros whenµ varies onCε(µmax) (f1,µ,+
does not have any zero on IR−), these lemmas imply that the set of zeros off1,µ andf1,µ,+ is
bounded.

Thus, a possible accumulation point is necessarily at a finite distance. This proves
proposition A. �

Now it can be shown that the construction of the zeros can be performed beyond the
accumulation point. This is due to the fact that this point cannot be a pole off1,µlim (see [11]),
and is thus a regular point, since the branch point has been avoided. It is then possible to apply
the local existence theorem again and, finally, there is no obstruction at all. This proves the
existence of the zeros for any finite real value ofµ.

These zeros are denoted bys0(µ) and s1(µ). s0(1) and s1(1) may be associated with
bound states or resonances of a one-dimensional oscillator coupled to a scalar massless boson
field via the HamiltonianH ′

µ=1, where

H ′
µ = a∗a ⊗ I +µ I ⊗ Hphot+ λ2(a

∗ ⊗ c(g2) + a ⊗ (c(g2))
∗). (A7)

g2 is even and coincides withg1 on IR+. Forµ < µc (see (29)),s0(µ) is an eigenvalue of
(A7). This eigenvalue is negative.
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