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Abstract

Considering a charged three-dimensional harmonic oscillator coupled to the
photon field by the usual coupling constant, we show that a qualitative
change in the possible states of the system occurs when a length and an
energy, characteristic quantities of the oscillator, satisfy a simple relation.
The frequency being fixed, oscillator—-photon resonances change to oscillator—
photon bound states when the length increases.

PACS numbers: 03.65w, 11.10-2z, 33.80=b

1. Introduction

A lot of work has been done aimed at describing as rigorously as possible the excited states of
matter coupled to radiation. It is of course impossible to quote all the papers devoted to the
subject. References [1] to [14] are among some works specially connected to this subject. In
[8-12] we introduced a parameterwhich is proved to be useful in studying resonances in
this context, even for large values of the coupling constant.

The aim of this paper is to show a physical situation in which this parameter has a physical
meaning and may vary. The dependence of the resonances or bound states on this parameter
is described. Some of the resonances we present are not considered, usually.

Of course some of these resonances do correspond to what is known as the excited states
of the system which is coupled to the boson. We will not try here to make precise which
ones because, surprisingly, this is an intricate question. It will be the subject of a forthcoming
paper. Indeed to answer this question we should let the coupling consdactease to 0, in
order to be able to compare the resonances we obtain to the non-perturbed eigenstates. But
then the position of the poles must be considered as functions of two variatdes,.. It
occurs that these functions are in general many-valued, even whadu are real. Itis a
surprising fact that variations with respectit@and,. do not always commute and this has the
consequence that the labelling of the resonances is a tricky problem. To avoid dealing with
that question, in all that follows the coupling constant is held fixed.
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2. Oscillator-photon bound states and resonances

2.1. The system, its physical parameters and its Hamiltonian

Let us consider a three-dimensional harmonic oscillator with charge +1 coupled to the photon
field. We suppose that the oscillator is isotropic, has massid spring constarit,. The

reason why its angular frequen@y= /k,/m is not the only parameter we introduce is that

we want to be free to also vary the space extension of the stationary states. This extension is
measured by := /A/mw. Whenw is fixed,5 1 will be the x parameter. We recall that the
wave functions of the states having enen@y are

Ongnyn, (X) = (\/;5)_3/2 (ZHX+HY+”Z nx!ny! nz!)_l/z
12242422 X z
xe 22 H”X(§>H”>'(§>H”Z<§) (1)
wheren = n, +n, +n;. Letus se€ := hw. By varying€ ands, we vary the quantity's
which has the same dimension/as
Let’H = Hosc® Hphot be the Hilbert space of the system states. The Hamiltonian for the
harmonic oscillator is

Hosc=h?(k°P)?/2m + k,r® |2 = E(a}ay + dlay + ala; +3/2) 2)
wherer € R3, k € R® anda, = 2~ Y2i(s71x + 89,).

The photon field, regularized by an ultraviolet cut-off functigmhich will be superfluous
later on, is

- 1/2
A lk F (e + € (k)i (k)e*T) di 3

r) = ((Zn)%) Z/W &R (e + ¢ (k)i ek (3)
wheree; (k) = ¢ (k), i = 1,2, are defined everywhere except for a certain diredtipand

form a field of two mutually orthogonal polarization vectoks k/|k|).
The coupling with the photon field is supposed to be given by simplifying the Hamiltonian

H = Hosc® I + 1 ® Hphott+ Hj (4)

with H; = —%A(r) - p. We suppress the constant ternHpsc
The firstapproximationis the so-called round wave approximation in which the interaction
is described only by resonant terms:

o 2 o

x (la- €] ¢ tye™*" +[a* - (0] c;()e*") dk (5)

wherea = (ax, ay, a;), €i(k) = ((€(k))x, (;(k))y, (e;(k));) and« is the fine structure
constant.

Let |0) denote the fundamental state of the oscillator @nthe vacuum in the photon
space. Because of the multiplication B§’e the interaction Hamiltonian transfori® ® |ke)
(the photon has a wave vectbiand a polarizatior) into a state having components on all
states|n) ® Q. So, in this paper, we will make a second approximation, getting rid of the
excited states of the oscillator except for the first one.

It must be noted that although the model is simple, obtaining all the resonances without
this approximation does not seem easy at all and has not been done up to now. (see [12] for a
first step). The proof of the existence, in the simple model that we present now, of a resonance



Oscillator—photon resonances 7759

which is usually not considered, except when itis real and under certain conditions, is the first
one to the best of our knowledge.

More precisely, letP<; be the projector on the space spanne@ifac ® Hpnot by the
following vectors or subspace®) ® 2, {|0)} ® Fphot1, a;|0) ® 2, a}|0) ® , a|0) ® Q.
(Fphot1 is the space of one-photon states.) We consider as our final interaction Hamiltonian

Hyj = P<g HRWAP . (6)
In the limit where the cut-oft is removed, it can then be shown that
Hyjp:=x¢& Z (ay ®ci(8ix(8, ) +ax ® (ci(gix (8, )" +ay ® ci(gi,y(8, )
i=1,2
+ay ® (¢i(giy(8, ) +al ®ci(giz(8,) +a; ® (ci(gi:(8,))") P<x (7)
where
o
M= — 8
1 o= 8
andg; (8. k) = (gi.+(8.K). giy (8. k). gi-(8.k)) = (8. k) € (k) Vk, k # ko, with
s 53/2 e—%k252/2
_— _— 9)
2/ /1K 2/ /SIK]
Fisthe Fourier transformation. The cut-off functieis no more useful, due to the exponential
decrease afp,0,0.

Through the successive simplifications, the original Hamiltonian (4) has thus been changed
to another one which has a simple Friedrichs’ type form [15]:

H1 = Pg1 (Hosc® 1) P<1+ P<1 (I @ Hphoo P<1+ Hag (10)

with Hy ; given by (7).
Let us now calculate the eigenvalues of (10) when they exist and prove that they manifest
themselves as resonances when they do not exist.

g(8, k) = F(lpo,0,0%) k) =

2.2. Determination of bound states and resonances

2.2.1. Existence. Let us state the result|1), denotess;|0), and|1) := (a;|0), (a}|0),
@?10). z — ((Lel[lz — Hi(D] Y1)~ is analytic in the upper half-plane and can be
analytically continued into the lower half-plane across the ciit IR this paper, we will
consider the function that this continuation defines in the complex plane cut alon§TiRe
upper lip of the cut is included.)

Proposition. There exist two complex-valued functions z1(E, ) and zo(E, §), defined for
every £ > 0and every 8§ > Qwhich are zeros of the multivalued function

-1
= ((Lllz = Hx1 L)) (12)

They are of the form z; (£, 5) = Ss,'(%), where s;(|L) is a zero of the analytic continuation
into C\IR™ from the upper half-plane of

1,12
o0 o e—j(s )
s — fLu(s) ::s—l—i/ SN (12)
3t Jo s—ps
(For s < 0, the concrete form of this continuation is f1, + given by (30).) 3
7.74x 10~% and p. = 3\‘/)‘2 ~ 9.7 x 1074 is a transition value for %, at which zo(&, §)
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changes from negative values to complex ones in the second sheet through the branch point of
(12) when % increases. The critical relation is thus
3

ESa = N h. (13)

More precisely,

(@) z1(&, 8) is a zero of the continuation of (11), or of fr/(es), into the lower half-plane
through the positive real axis. It is complex for every value of £ and §.

(by) If€S < ﬁ h >~ 164h, z0(&, 8) is another complex zero of the continuation of (11) into

the same region. The coupled oscillator has a resonance corresponding to that complex
point. This resonance never becomes real.

(bp) IFES > ﬁ h >~ 164h, zo(€, 8) is negative and the coupled oscillator has a bound state

with energy zo(E, 8). The eigenspace is three-dimensional. Eigenvectors (depending on

& and §) corresponding to the eigenvalue zo(€, 8) are

1,262
\/& e—?k 8°/2
£510) ® —— P()(V) (14)

212 V1k| (zo(E, 8) — hlk|)
with V arbitrary in C2 and P(k) denoting the orthogonal projector on k*. These states
have angular momentum 1 as linear superpositions of angular momentum 1 states.

Yoyk) =V 1)@ Q+

Remark. As we have mentioned in section 1, one of the two resonances (or bound states)
is the one usually associated with the unstable states correspondihg,tiil,), |1;). But

the difficulty of knowing which one holds to the fact that the usual calculation and even the
definition of the excited states are in termgfand variation with respect ta and A do

not commute for all paths. This will be discussed in the paper in preparation mentioned in
section 1. This question is also linked with the possibility, in casg, @ a coincidence
betweern;o(&, §) andz1(€, §) for some special values 66 (anda).

£ ands are independent quantitieS.being given, ifs increases, the proposition tells us
that there is a qualitative transition in the nature of the possible states of the systeriédvhen
crosses 164 The critical distance corresponding to 1 eWjs>~ 0.2 mm. Physically§ is
large wherk, is small(§ = hY2(mk,) Y4 = g2, /),

Proof. The first part of the proof that follows is not essentially a new result; itis only given here
to take explicitly into account the vector aspect of the photon, and to follow the dependence
in £ ands of the oscillator—photon bound states. The second part proves that this bound state
turn into a resonance for sufficiently large and arbit@ry his result is new.

Part 1. Let us look for eigenvectors of (10) of the form

Yk) = (a- 1)) ® Q+]0) ® p(k) Pro, .,k)(B1, B2) (15)
whereg is in L?(R®), vectorsa andg3; are constant vectors i@ and

Proi, ., (k)(B1. B2) = Proj, 4, (B1) e1(k) + Pro, (k)(B) ex(k)

Proj, being the orthogonal projector an The set of states of the form (14) is invariant by
H1. The relation

Hiy =z (16)
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is equivalent to the set of relations

(M1€ gs(k)a — @(k)(z — hk)B1) - €1(k) =0 (16a)
(M€ gs(k)a — p(k)(z — hk)B5) - €2(k) =0 (16b)
£ a+mé / oK) g5 () Prof, ., (k)(B1, By) dk = z a. (16¢)

gs is written forg (8, -). Let us suppose that the functieg(-) is chosen in such a way that its
three components . (), ... are linearly independent, and also in such a way that the three
components oéx(-) are independent.

From (16a) and (16b), if < 0, whené is large enough, we get

C1 gs(k)

plk) = — Tkl (17)
(If z > 0,¢ ¢ L?(R®). The dependence gfon s is understood.) We also get

B1=PB=Cit M a. (18)
Relation (16c) then implies

La=0 (19)
with

Ly=@G—-81—-0&2T (20)
where we set

5 (k))?
(8 (h)li| 21)
L andT are operators on fRdepending on the eigenvalue We havefsz P(k) = %”I and
thus
2 oo g 3%

r= 5(52/0 T k| d|k|)1. (22)
Therefore L o = 0 has a non-zero solution fer only if z is a zero of

f,2)=z7—&— gxi £252 /Ooo % dlk]| (23)
where

g1.5(6) 1= §Y/2 o287 (24)

is now a function of one variableg(s, k) in (9) was a function of three variables.) We will
also be interested in the zeros of the analytic continuatiofi(@i, -) across the positive real
axis, which we denote by (11, -), since, by
(Lellz = H ML) ™ = f0a,0) (25)
a relation which will be proved at the end of the section, this continuation gives resonances.
Let us now introduce the dimensionless quantities
o)

s=E1z and yi== (26)

We get
F1,2) =€ fray(s) (27)
with f1 . (s) given by (12).
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Part 2. So we are now left with the determination of zerosfaf,, with u = 1/y. (As
expected, they depend only (élgl.) Zeros of functions of this type, with various functions in
the numerator of the integrand in (12), were determined in [8-12]. Unfortunately, the function

gu(s) == M2 e
in (12) does not decrease at infinity, exceptafgs| < w/4 or|arg—s| < 7 /4; this prevents
us from using the theoretical result in [11] for getting zerog'of,. They can be computed
numerically (see section 2.2.2), but the theoretical analysis is also useful.

Let us note that there would have been no problem here if we had considered the hydrogen
atom instead of the harmonic oscillator. Indeed the behaviouriha the stationary states at
large distances would give rise to coupling functions decreasing at infinity (and having poles
at finite distances). However, the proofin [11] may be adapted to the present case as explained
in the appendix.

This implies thatfy ,, or its analytic continuation has at least two zes@g:) ands1(u),
the eigenvalues of (10) we are looking for being then

Zi(f:, 5) = SSZ' <%> = SSZ' (%) . (28)

Moreover, the functions;, or z;, may be described qualitatively by introducing
o

se = —— 1151 Le2(s) 11 = — /Oo e 2ds =
<6 1 67 J_ oo 327

Whereag (€, 8) is complex for allg, § and indicates a resonanceg(&, §) may be complex
or real, indicating a resonance or a bound state, depending on whethev/27 o1 or

y > 3v2r «~1. Thatzi(€, 8) never becomes real is due to the fact tffigf, has no real
zeros ifu > u. and only one ifu < ., since itis an increasing function. The proposition
will be completely proved when we have proved (25).

The proof goes the usual way by considering the projegimm the one-dimensional space
{|1,) ® Q},andQ =1 — 0. When3z > 0, so thatQ[z — H1] Q is invertible, the operator
Q(z—&)Q—QH1,10(Q[z—H1] Q)" Q Hy 1 Q acting in this space is a multiplication operator
with inverse (1, |[z — H1]~Y1,)I. To calculate the former, one develops perturbatively
(0[z — H1]Q)~1. Only the term without coupling ifQ[z — H1]Q)~! gives a non-zero
contribution. Indeed, after integration on all directions of the photon momenta, only the
diagonal termger) . (k) (e1)x (k) + (€2)x (k) (e2)x (k) (the same withy andz) give a non-zero
contribution 87 /3. These terms are the matrix element®(). O

~9.7x 1074 (29)

2.2.2. Numerical values. \We are particularly interested in the zeid¢, 3).

In case (a) of the proposition, that is for values)of= % below the critical value
Ye := (ue)~t ~ 1030, the continuatiorfy 1/, ,+ of f1,1/, across the positive real axis from
the upper half-plane is

00 —1s2 .
fl’%&:s—l—% A sl_eT/ydsl+§iay2se_?3’2sz. (30)

The path of the zersy(1) in the complex plane ag varies between 600 and 930 is shown
in figure 1. It gives the position of thg-resonance after multiplication & It is difficult to
approach the critical value. >~ 1030 because of the lack of convergence of the calculation on
the computer. However, as expected, it can be seen by refining the calculation that the path is
likely to link with the negative real axis at 0 whenincreases up tg., or, if £ is fixed, when
8 increases up to the critical valdge
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N 0.00004 0.00006 0.00008 0.0001
-0.00005;¢

-0.0001;
-0.00015;¢
-0.0002}
-0.00025;¢

Figure 1. Complex values ofg = £ 1z4(&, ) for 600 < y < 930 < y.

ve = 1030
l
1500 2000 2500 3000 Y
-0.0001
-0.0002
-0.0003
-0.0004
S0

Figure 2. Values ofsg = £ 1z(€, §) as a function ofy =15 fory > ..

Fory > y., case (b) of the proposition, the real negative valuegdfzo(&, §) = so(%)
are shown on the vertical axis of the graph in figure 2 as a function dthese are energies
of bound states. The following relations can be proved from (12):

. 1 . 1
lim s (—) =0 lim sg (—) ~_ 2o —7.7x 1074,
y=ve 14 y—>00 y 3

The zerozi (€, §) moves entirely inside the second sheet, wheraries, and

y|i£10011<%> ~& (1 +%) .

3. Conclusion, comments and perspectives

3.1. Conclusion

We exhibited two poles of the Hamiltonian resolvent. We left open the question knowing
which one is related to the familiar one associated with the unperturbed excited level. The
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following analogy may help to grasp the difficulty. A second-order algebraic equation has two
zeros but when some parameter is introduced in the equation, the two zeros may interchange
in some sense, when the parameter varies in the complex plane. In our case, it can be shown
that the difficulty even appears in4R The important point for us here is that there are two
poles.

From the propositiorngg is real negative whe# § « is sufficiently large. In QEDg is
fixed, so the only way to hawgs « large is to have large ors large (or both). The principal
aim of the paper was to present a simple model and its physical parameters which can be used
to follow oscillator—photon bound states correspondingytdlrhe proof that these states turn
into resonances when some characteristics of the oscillator are varied has been given. We do
not know of any such statement in the relevant literature.

3.2. More complete and more realistic studies of systems interacting with photons

The model we examined in this paper is certainly a rough one. It would be interesting to
improve it, for example, by taking into account the previously neglected excited states of the
oscillator, or treating completely the hydrogen atom, or hydrogenic atoms, coupled to the
photon field in a non-relativistic way. Although electromagnetic matrix elements given in [16]
could be used so that the Hamiltonian is known by its matrix elements on a certain base, it
seems to us a difficult task to look for all the resonances. Indeed, even by limiting ourselves
to one photon and one excited state, we have seen that the position of the resonances can
only be determined by a computer, since no perturbative argument is known at the moment.
We have only an existence theorem. Nevertheless, the model we just treated shows that
bound states, which would perhaps have been associated with strong coupling, may possibly
occur in electromagnetic interactions if the states of the system which couples to the radiation
have a sufficiently large extension. In this respect, it would also be interesting to examine
the consequences of the result with regard to atoms or large molecules. We showed that
even if the bound states are not present, they manifest themselves (theoretically, at least) as
resonances. It is expected that to each energy level of the system which is coupled to the
photon is associated a countable infinity of bound states or resonances. This has been proved
for the complete one-dimensional oscillator coupled to massless scalar bosons via a certain
class of meromorphic coupling functions [12].

3.3. A possible application to quark—gluon systems

The coupling constant in the model was the electromagnetic one. Nevertheless, the statement
in the proposition still holds with any value of, for instancex,, the coupling constant

of strong interactions at low energy. (Let us recall that what we wanted to avoid, for the
moment, was to vary and the coupling constant simultaneously. But the coupling constant
can in fact be chosen arbitrarily, provided that it is kept fixed in the process of determining
the resonances.) Models coupling quark systems in the fundamental state and first excited
states to gluons could be examined with the point of view we presented here, neglecting in
a first approach spin, flavour and colour degrees of freedom. The possible formation of a
gg-gluon bound state, due to the existencegfcould be in competition with the bringing

of the gg system in an upper excited state by the gluon. Since in excited states quarks
are likely to be further apart than in the fundamental state, this could yield a confinement
mechanism.
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Appendix A
We study here the zeros of (12)

12
51 € 2%

dsy

fru(s) =s—1— m;/

0 S—us

from a theoretical point of view. Numerical values are given in the figukess \/g. The
method in [10, 11] for proving the existence of the zesg(g) ands1(w) for any valueumax

of  is to follow the existence of; () asu varies on a certain path i@, starting from 0 and
ending atumax- If itis so(n) thatis followed, the path described pymust avoidu. (A2) (see
(29)), forso(w) to avoid 0, which is the branch point ¢i ,,. Nearu.(i2), we suppose that
the path follows the half-circle of radius:= j.(12) sin{; so that arge < 75. Otherwise,

wu stays real. The path is denoted &\(umax). The path used to follow; () may simply

be [0 umax. A local existence theorem on zeros of analytic function is used to perform a
step-by-step construction of(w), up to a certain limit point; im for a certainu; jim. The
construction is successful if; jim is not smaller thammax. The way we did this in [11] was

to prove the following:

Proposition A. [f there is an accumulation point sy in the construction, it is necessarily at
a finite distance.

The proof of this assertion in [11] uses the boundednesg @it infinity in all complex
directions. Although this is not true here, the proposition still remains true.

Proof. We are going to prove three lemmas which concern roughly the three regions where
gf is respectively exponentially decreasing, exponentially increasing and linearly increasing
at infinity. The idea of the proof is to show tha&nd

00 1
p(s) = / € ? ds1 (A1)

0 S—s1
have different behaviour at infinity. O

Lemma Al. Set S1 := {¢; —% < arge < m}. ¢(¢) together with its analytic continuation
are bounded in S1, for |¢| > 1.

Proof. (Adaptation of the proof of lemma 1 of [11])Let ¢ be in S1. Let us consider
the discD(¢,sin%). If S¢ > 0 andD(¢,sing) N R* = ¢, then|p(o)| < (sing) ™.

If D(¢,sing) NIR* # ¢, then the boundary ob does not intersect @2 R* and thus
SURcsp lg1(z)|? < oo. The integral defining or its continuationp. may be calculated on
a contour the points of which remain at a distance at leas§ $iom ¢, a contour which is
either a part of R or a part ofd D. The boundedness follows. Finally,#7 < arg; <0
andD(¢,sing) N R* = @, theng.(¢) is the sum of the principal determination, which is
bounded, and the residue part2i(¢)? which is also bounded. Thysor ¢. are bounded
in S1. U
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@ is also bounded if| > 1 and—n < arg¢ < —27/3. As a consequence, since for
w € Ce(imax), s € Sy impliess/u’ € S1or —m < arg-% L < —2n/3, the zeros off1 , (s) or
S1,u, +(s) in S form a bounded set.

Lemma A2. For® >0 letf = 2 + 60 bein]0, Z[. Set Sp 1= {¢; —3T + 6 < arg <
_Z — 6}, Let 1, 2 satisfy 2 > pn1 > 0. Set My :== max{Agy/, B} with

1/2
B 2 (n2)? Y B 2 (n2)?
Ag = 12 (sin 5 log (4}1)% (1 + E))) B = (&/‘A o ) . (A2)

Then {|i] € [p1, 2], s € Sp, |s| > Mo} = f1,,,+(s) # 0.

Proof. s € Sy impliess/u € Sg. We have
1 A2 s\t s
ST () =1-==2-5 (_> - (_)
s ne\ u 2

e 91/2 .
¢ lpa0) = / nE ds1 — 2imre 3¢,
¢ — 81

where

From co$arg((ﬁ)2)) < —sin(29") and|s| > Agr we get

1s|? 2
a sin(20’) | > (M2)2 (1 + l) .
M 4 A5 751

w w
Therefore,
32/ s >—1 s y (12)® A5 Y
2— — 10 <—> ><1+—>—2\/§ 21+
u? ‘(M \u n1 (n1)? B? 2u1
This implies|s 1 f1,,,.+(s)| > 0. O

We are left with proving the boundedness property of the set of zeros in the intermediate
region.
Lemma A3. The set of zeros of fiu+ in {s; 7 — 5 < args < 7}, for |u| > p1 and
u € Ce(may), is bounded.

Proof. Let us set ;= m It can be seen that , +(ru(1 — i) = 0 is equivalent to
5 M
x(u,t) ' =put—1/2+2-=1(t) — 4w =t sin(t”) =0 (A3a)
iz 2

2
y(u, 1) = —1/2 — 4—t11(t)+2—12(t)+47t 21 cogt?) = (A3b)
n
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where

© sce 2 o0 se z
2(1) /0 s2+ (2t —5)? ds, 1) /0 s2+ (2t —5)? ds

Setr = %randd = argr. If 6 < %, then 1—- 2 tarf6 > 1/3 and

2
s+ (2t — $)?| > 512, Vs > 0. (A4)

If 1 € Ce(umax) ands satisfies the hypotheses, thefg < 6 < 0 and thusr > FM' s].
We then get

0< () < 4(Mmax)2\/§ 5|72, 0<1t (1) <2v2 pumaxls| ™t (A5)

Sincels| > n1+/2 |t|, we get

2
-1/2— 4z l2 . 21 sin(t?) = o(Jt| ™Y

2
—1/2+47r 224 cogt?) = o(JtI7H
"

which implies

A’% 2 2.2 1 1
47r;t =uct +§—ut+0(|t|_ ). (A6)

But if ¢ is large enough and thusis large enough, for any satisfyingui < |l < tmax
(A6) is false. O

As we covered all the possible regions for the zeros whemries onCe (tmax) (f1, .+
does not have any zero on'IR these lemmas imply that the set of zerogof, and f1 . + is
bounded.

Thus, a possible accumulation point is necessarily at a finite distance. This proves
proposition A. O

Now it can be shown that the construction of the zeros can be performed beyond the
accumulation point. This is due to the fact that this point cannot be a pgle gf, (see [11]),
and is thus a regular point, since the branch point has been avoided. It is then possible to apply
the local existence theorem again and, finally, there is no obstruction at all. This proves the
existence of the zeros for any finite real valug.of

These zeros are denoted hy(t) andsi(u). so(1) ands1(1) may be associated with
bound states or resonances of a one-dimensional oscillator coupled to a scalar massless boson
field via the Hamiltoniarf?,_,, where
H,=a"a® 1+l ® Hphot+ 2(a* ® c(g2) +a ® (c(g2)). (A7)

g2 is even and coincides witky on IR*. Foru < . (see (29))so(w) is an eigenvalue of
(A7). This eigenvalue is negative.
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